Testing Poisson Binomial Distributions
نویسندگان
چکیده
A Poisson Binomial distribution over n variables is the distribution of the sum of n independent Bernoullis. We provide a sample near-optimal algorithm for testing whether a distribution P supported on {0, . . . , n} to which we have sample access is a Poisson Binomial distribution, or far from all Poisson Binomial distributions. The sample complexity of our algorithm is O(n) to which we provide a matching lower bound. We note that our sample complexity improves quadratically upon that of the naive “learn followed by tolerant-test” approach, while instance optimal identity testing [VV14] is not applicable since we are looking to simultaneously test against a whole family of distributions. Supported by grant from MITEI-Shell program. Supported by a Sloan Foundation Fellowship, a Microsoft Research Faculty Fellowship and NSF Award CCF0953960 (CAREER) and CCF-1101491.
منابع مشابه
Zero inflated Poisson and negative binomial regression models: application in education
Background: The number of failed courses and semesters in students are indicatorsof their performance. These amounts have zero inflated (ZI) distributions. Using ZI Poisson and negative binomial distributions we can model these count data to find the associated factors and estimate the parameters. This study aims at to investigate the important factors related to the educational performance of ...
متن کاملA continuous approximation fitting to the discrete distributions using ODE
The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...
متن کاملCharacterizations of Discrete Distributions Based on Factorial Cumulants
In this paper, characterizations of the binomial, negative binomial, geometric, Poisson binomial, Hermite and Poisson distributions are done through their factorial cumulants.
متن کاملThe Negative Binomial Distribution Efficiency in Finite Mixture of Semi-parametric Generalized Linear Models
Introduction Selection the appropriate statistical model for the response variable is one of the most important problem in the finite mixture of generalized linear models. One of the distributions which it has a problem in a finite mixture of semi-parametric generalized statistical models, is the Poisson distribution. In this paper, to overcome over dispersion and computational burden, finite ...
متن کاملPromotion time models with time-changing exposure and heterogeneity: application to infectious diseases.
Promotion time models have been recently adapted to the context of infectious diseases to take into account discrete and multiple exposures. However, Poisson distribution of the number of pathogens transmitted at each exposure was a very strong assumption and did not allow for inter-individual heterogeneity. Bernoulli, the negative binomial, and the compound Poisson distributions were proposed ...
متن کامل